	SIX N	MONTHS PLAN		
	Technical Subject	Non technical subject	Test/Practise	Revision
WEEK 1	SOM & CPM		PREVIOUS YEAR	MAKE SHORT NOTES
DAY 1	1. Properties Of Material & 1. Introduction		QUESTIONS Vs OF THE	OF A SUBJECT WHEN
	1. Properties Of Material & 2. Fundamentals of AOA		TOPIC STUDIED ON A	IT HAS BEEN
DATZ	Network		PARTICULAR DAY.	STUDIED ATLEAST
DAY 3	2. Hooke's Law & 3.Critical Path Method		PRACTISE FROM QUIZ AT	ONES AND KEEP
DAY 4	2. Hookes's Law & 3. Critical Path Method		THE END OF EACH	REVISING
DAY 5	2. Hooke's Law & 4. PERT		CHAPTER. PRACTISE	REGULARLY.
DAY 6	3. Shear Force And Bending Moment & 4.PERT		FROM THE DAILY QUIZ.	
DAY 7	3. Shear Force And Bending Moment & 5. Crashing		START TEST SERIES ONCE	
WEEK 2	SOM & CPM		70 % OF SYLLABUS IS	
DAY 1	3. Shear Force And Bending Moment & 5. Crashing		COMPLETE.	
	3. Shear Force And Bending Moment & 6. Activity Over			
DATZ	Node			
DAY 3	4. Bending Stress & 7. Resource Updating And Allocation	$\land \land \land$		
DAY 4	4. Bending Stress & 8. Engineering Economy			
DAY 5	4. Bending Stress & 8. Engineering Economy			
DAY 6	5.Shear Stress & 9. Construction Equipments			
DAY 7	5.Shear Stress & 9. Construction Equipments			
WEEK 3	SOM & HYDROLOGY			
DAY 1	6. Torsion & 1. Introduction	halearning		
DAY 2	6. Torsion & 2. Precipitation & Its measurement			
	7. Transformation Of Stess & Strain & 2. Precipitation &			
DATS	Its measurement			
	7. Transformation Of Stess & Strain & 2. Precipitation &			
DAT 4	lts measurement			
	7. Transformation Of Stess & Strain & 3. Abstractions			
	from precipitation			
DAY 6	8. Theories Of Failure & 3. Abstractions from precipitation			
DAY 7	9. Combined Stress & 4. Stream flow measurement			

WEEK 4	SOM & HYDROLOGY	
DAY 1	10 Thick & Thin Shells & 4. Stream flow measurement	
DAY 2	11. Column & 5. Runoff	
DAY 3	12. Spring & 6. Hydrograph	
DAY 4	13. Deflection & 6. Hydrograph	
DAY 5	13. Deflection & 6. Hydrograph	
DAY 6	13. Deflection & 7. Flood, 8. Flood Estimation & Routing	
DAY 7	13. Deflection & 9. Ground water hydrology	
WEEK 5	SA & TRANSPORTATION	
DAY 1	 Determinacy and Indeterminacy & 1. Highway Development and planning 2. Geometric Design of highways 	
DAY 2	1. Determinacy and Indeterminacy & 2. Geometric Design of highways	\land
DAY 3	1. Determinacy and Indeterminacy & 2. Geometric Design of highways	
DAY 4	1. Determinacy and Indeterminacy & 2. Geometric Design of highways	
DAY 5	2. Slope Deflection Method & 3. Traffic Engineering	
DAY 6	2. Slope Deflection Method & 3. Traffic Engineering	
DAY 7	2. Slope Deflection Method & 3. Traffic Engineering	halearning
WEEK 6	SA & TRANSPORTATION	na Leannig
DAY 1	3. Moment Distribution Method & 3. Traffic Engineering	
DAY 2	3. Moment Distribution Method & 3. Traffic Engineering	
DAY 3	3. Moment Distribution Method & 4. Pavement Design	
DAY 4	4. Truss Analysis & 4. Pavement Design	
DAY 5	4. Truss Analysis & 4. Pavement Design	
DAY 6	4. Truss Analysis & 4. Pavement Design	
DAY 7	5. Influence Line & 5. Highway Materials	

WEEK 7	SA & TRANSPORTATION	ІСТ
DAY 1	5. Influence Line & 5. Highway Materials	1. Evolution of communication
DAY 2	6. Matrix Methods & 5. Highway Materials	2. Tools
DAY 3	6. Matrix Methods & 6. Geometric Design of railways	2. Tools
DAY 4	7. Force Methods & 7. Miscellaneous concepts of railway	2. Tools
DAY 5	7. Force Methods& 7. Miscellaneous concepts of railway	2. Tools
DAY 6	8. Cable & Arches & 8. Airport Engineering	2. Tools
DAY 7	8. Cable & Arches & 8. Airport Engineering	3. Networking
WEEK 8	SOIL & OCF	ICT & BASICS OF ENVIRONMENT
DAY 1	1. Origin of soil and soil water relationship & 1. Introduction (OCF)	3. Networking
DAY 2	1. Origin of soil and soil water relationship & 1. Introduction(OCF)	4.E-Governance
DAY 3	1. Origin of soil and soil water relationship & 2. Uniform flow	4.E-Governance
DAY 4	2. Classification of soil & 2. Uniform flow	1.Basics of Environment
DAY 5	3. Clay Mineral and Soil structure & 3. Energy depth relationship	1.Basics of Environment
DAY 6	4. Soil Compaction & 3. Energy depth relationship	1.Basics of Environment
DAY 7	5. Effective stress, Capillarity and permeability & 4. Gradually varied flow	2. Pollution and Degradation
WEEK 9	SOIL & OCF	BASICS OF ENVIRONMENT
DAY 1	 Effective stress, Capillarity and permeability & 4. Gradually varied flow 	2. Pollution and Degradation
DAY 2	 Effective stress, Capillarity and permeability & 4. Gradually varied flow 	2. Pollution and Degradation
DAY 3	6. Seepage through soil & 5. Rapidly varied steady flow	2. Pollution and Degradation
DAY 4	7. Vertical stresses & 5. Rapidly varied steady flow	2. Pollution and Degradation
DAY 5	8. Compressibility and Consolidation & 5. Rapidly varied	2. Pollution and Degradation
DAY 6	8. Compressibility and Consolidation & 6. Rapidly varied	2. Pollution and Degradation
DAY 7	8. Compressibility and Consolidation & 6. Rapidly varied	3.Climate Change

WEEK 10	SOIL & ENVIRONMENT	DESIGN AND DRAWING
DAY 1	9. Shear strength of soil & 1. Water demand, source and conveyance	1. Introduction
DAY 2	9. Shear strength of soil & 1. Water demand, source and conveyance	2. Orthographic Projections
DAY 3	9. Shear strength of soil & 2. Water quality parameters	3. Projection of Points
DAY 4	10. Stability of slopes & 2. Water quality parameters	4. Projection of Lines
DAY 5	11. Earth pressure and retaining walls & 3. Treatment of water	4. Projection of Lines
DAY 6	11. Earth pressure and retaining walls & 3. Treatment of water	5. Projections of Planes
DAY 7	12. Shallow foundation and Bearing Capacity & 3. Treatment of water	6. Projections of Solids
WEEK 11	SOIL & ENVIRONMENT	DESIGN AND DRAWING
DAY 1	12. Shallow foundation and Bearing Capacity & 4. Distribution system	7. Sections, Development & Intersection of Solids
DAY 2	12. Shallow foundation and Bearing Capacity & 4. Distribution system	8. General Design Principles
DAY 3	13. Deep Foundation & 5. Waste water characteristics	8. General Design Principles
DAY 4	13. Deep Foundation & 6. Biochemical reactions in treatment of waste water	8. General Design Principles
DAY 5	13. Deep Foundation & 7. Disposal of sewage effluent	9. Importance of safety
DAY 6	14. Soil Exploration & 7. Disposal of sewage effluent	9. Importance of safety
DAY 7	15. Expansive Soils & 8. Design of sewerage system	9. Importance of safety
WEEK 12	ENVIRONMENT	QUALITY
DAY 1	9. Waste water treatment	1. Journey towards excellence
DAY 2	9. Waste water treatment	1. Journey towards excellence 2. Mathematical Tools
DAY 3	9. Waste water treatment	3. Quality Control tools
DAY 4	10. Solid waste management	3. Quality Control tools
DAY 5	11. Air pollution	4. Acceptance Sampling
DAY 6	11. Air pollution	5. Inventory and line balancing
DAY 7	12. Noise pollution	5. Inventory and line balancing

WEEK 12		QUALITY & PROJECT
WLLK 15		MANAGEMENT
DAY 1	1. Introduction & 1. Fundamentals of surveying	6. Six Sigma
DAY 2	2. Limit state of collapse-flexure & 2. Linear measurement	7. Reliability and maintainability 8. Quality in construction
DAY 3	2. Limit state of collapse-flexure & 2. Linear measurement	1. Fundamentals of Project Management
DAY 4	2. Limit state of collapse-flexure & 3. Compass surveying	1. Fundamentals of Project Management
DAY 5	3. Limit state of collapse-shear & 3. Compass surveying	 Fundamentals of Project Management 2. Process Group and Knowledge Area
DAY 6	3. Limit state of collapse-shear & 4. Traversing	3. Project Initiation
DAY 7	3. Limit state of collapse-shear & 5. Traversing	3. Project Initiation
WEEK 14	RCC & SURVEYING	PROJECT MANAGEMENT
DAY 1	3. Limit state of collapse-shear & 5. Levelling	4. Project Planning
DAY 2	4. Torsion & 5. Levelling	4. Project Planning
DAY 3	4. Torsion & 5. Levelling	5. Risk Management
DAY 4	4. Torsion & 6. Tacheometry	5. Risk Management
DAY 5	5. Bond & Anchorage & 7. Trigonometric levelling	6. Project Execution
DAY 6	6. Design of beams and slabs & 8. Photogrammetry	7. Project Monitoring and control
DAY 7	6. Design of beams and slabs & 8. Photogrammetry	8. Project Closing
WEEK 15	RCC & SURVEYING	MATERIAL SCIENCE
DAY 1	6. Design of beams and slabs & 8. Photogrammetry	1. Introduction
DAY 2	7. Columns & 9. Contouring	2. Chemical bonding
DAY 3	7. Columns & 10. Measurement of area and volume	3. Crystallography
DAY 4	7. Columns & 11. Theory of errors	3. Crystallography
DAY 5	8. Footings & 12. Plane table surveying	4. Electronic materials
DAY 6	8. Footings & 13. Curves	4. Electronic materials
DAY 7	9. Prestressed concrete & 13. Curves	5. Magnetic properties of material

WEEK 16	RCC & BMC	MATERIAL SCIENCE
DAY 1	9. Prestressed concrete & 1. Cement	5. Magnetic properties of material
DAY 2	9. Prestressed concrete & 1. Cement	6. Ceramics
DAY 3	9. Prestressed concrete & 1. Cement	7. Polymers
DAY 4	10. Miscellaneous & 2. Lime	8. Composites
DAY 5	10. Miscellaneous & 3. Mortar	9. Mechanical Properties of Material
DAY 6	10. Miscellaneous & 4. Aggregate	10. Ferrous Metals
DAY 7	10. Miscellaneous & 5. Admixture	11. Non ferrous metals and alloys & 12. Smart materials
WEEK 17	FM & BMC	MATHS
DAY 1	1. Properties of Fluid & 6. Concrete	1. Calculus
DAY 2	1. Properties of Fluid & 6. Concrete	1. Calculus
DAY 3	1. Properties of Fluid& 6. Concrete	1. Calculus
DAY 4	2. Fluid Pressure And Measurement& 7. Bricks	2. Vector Calculus
DAY 5	3. Hydrostatic Forces & 7. Bricks	2. Vector Calculus
DAY 6	4.buoyancy and Floatation & 8. Timber	2. Vector Calculus
DAY 7	5.Liquid in Relative Equilibrium & 8. Timber	3.Matrix Algebra
WEEK 18	FM & IRRIGATION	MATHS
DAY 1	6. Fluid Kinematics & 1. Methods of irrigation	3.Matrix Algebra
DAY 2	6.Fluid Kinematics & 2. Soil Moisture and Plant relationship	3.Matrix Algebra
DAY 3	6.Fluid Kinematics & 2. Soil Moisture and Plant relationship	4. Probability
DAY 4	7.Fluid Dynamics And Flow Measurement & 3. Water Requirement of crops	4. Probability
DAY 5	7.Fluid Dynamics And Flow Measurement & 3. Water Requirement of crops	4. Probability
DAY 6	7.Fluid Dynamics And Flow Measurement & 4. Water Logging and Reclamation of saline soils	5. Ordinary Differential Equations
DAY 7	8.Dimensional Analysis & 5. Design of lined and unlined canals	5. Ordinary Differential Equations

WEEK 19	FM & IRRIGATION	MATHS
DAY 1	9.Pipe Flow & 5. Design of lined and unlined canals	5. Ordinary Differential Equations
DAY 2	9. Pipe Flow & 6. Canal Regulation work	6. Partial Differential Equations
DAY 3	10.Laminar flow & 6. Canal Regulation work	7. Laplace Transformations
DAY 4	10.Laminar flow & 7. Canal Headworks & Seepage theory	7. Laplace Transformations
DAY 5	11.Turbulent Flow & 7. Canal Headworks & Seepage theory	8. Numerical Methods
DAY 6	12.Boundary Layer Flow & 8. River Engineering	8. Numerical Methods
DAY 7	13.Drag and Lift & 9. Cross Drainage works 10. Dams & Reservoirs	9. Fourier Series
WEEK 20	STEEL, IRRIGATION & HM	MATHS & APTITUDE
DAY 1	1. Introduction & 10. Dams & Reservoirs	10. Complex Functions
DAY 2	2. Connection & 10. Dams & Reservoirs	10. Complex Functions
DAY 3	2. Connection & 10. Dams & Reservoirs	10. Complex Functions
DAY 4	2. Connection & 11. Spillways	1. Arithmetic
DAY 5	2. Connection & 1. Hydroelectric Plant	1. Arithmetic
DAY 6	2. Connection & 2.Dynamic Action of fluid	2. Algebra & Geometry
ΠΑΥ 7	3 Tension member & 2 Dynamic Action of fluid	3. Reasoning & Data
	5. Tension member & 2. Bynamie Action of hald	Interpretation
WEEK 21	STEEL & HM	ETHICS
DAY 1	3. Tension member & 2. Dynamic Action of fluid \square	1. Introduction
DAY 2	3. Tension member & 3. Turbines	2. Professional Ethics
DAY 3	4. Compression member & 3. Turbines	2. Professional Ethics
ΠΔΥ 4	4 Compression member & 3 Turbines	3. Organization behaviour and
	4. compression member & 5. rubbines	management
DAY 5	4 Compression member & 3 Turbines	3. Organization behaviour and
		management
DAY 6	4. Compression member & 3. Turbines	4. Principles of Ethics
DAY 7	4. Compression member & 3. Turbines	4. Principles of Ethics

WEEK 22	STEEL & HM	CURRENT AFFAIRS
DAY 1	5. Beam & 4.Pumps	5. Human values Psychology
DAY 2	5. Beam & 4.Pumps	5. Human values Psychology
DAY 3	6. Plastic analysis & 4. Pumps	6. Moral thinkers
DAY 4	6. Plastic analysis & 4. Pumps	7. Ethics in Governance
DAY 5	6. Plastic analysis & 4. Pumps	7. Ethics in Governance
DAY 6	7. Miscl. Topics & 4.Pumps	8. Ethical issues
DAY 7	7. Miscl. Topics & 4.Pumps	8. Ethical issues
WEEK 23		REVISION & PRACTISE
WEEK 24		REVISION

